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Abstract

This note works out the third order estimate for the beam position, for
use with the upgraded Tevatron BPMs, including corrections for the un-
measured coordinate. The note includes figures that illustrate the residual
error that remains after the corrections are made. Code to implement the
correction has been placed in the DocDB along with this writeup. The
main result of the paper is in Figure 5, which shows the accuracy that
can be achieved online and Figure 6, which shows the accuracy that can
be achieved offline. There is one important caveat: the treatment of the
coupling between the electrodes may not be complete.

1 Caveat

This note does not do a complete treatment of the coupling between the elec-
trodes in the pickup. Hopefully a more complete treatment will only change the
details, not the big picture.

2 Model Without Coupling

In Beams-doc-1161-v1, equation 6 gives the magnitudes of the A and B signals
on a pickup as a function of beam position and current. The model ignores
the coupling between the electrodes and any edge effects coming from the finite
length of the electrodes. The model is,
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where the actual beam position is given in 2D polar coordinates (r, 6), where b
is the radius of curvature of the electrodes and where the electrodes subtend an
arc of angle ¢. The origin of the coordinate system has been chosen so that x
is the coordinate measured by the BPM while y is the orthogonal coordinate.
These quantities are illustrated in Figure 1. The subscript 0 on Ay and By
indicates that these quantities ignore coupling.



Figure 1: Definition of the parameters used in the equations. The two electrodes
are labeled A and B. The electrodes are concentric arcs of a circle of radius b.
The angle subtended by each electrode is given by ¢. The BPM measures the z
coordinate. The beam position is indicated by the filled dot and its position is
denoted by either (z,y) or (r,0). The numerical values come from Beams-doc-
8009.



Expanding these equations to third order in r/b gives,
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In the last line, the only change is to reduce the sin ¢ terms. These equations
can be changed to Cartesian coordinates using,
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This gives,
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3 Adding Linear Coupling
If the electrodes A and B are linearly coupled, then the signals on A and B are
given by,

A = Ay+CB (16)
B = By+CA, (17)



where A and B are the signals including coupling and where C is the cou-
pling coefficient. Ay and By, the signals in the no-coupling limit, are given by
equations 11 and 12, respectively. The solution to these equations is,
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Expanding to third order in 7 /b gives,
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4 First Order Position and the Value of b

To first order in r/b, Equations 20 and 21 give the familiar expression for the
position as a function of A and B,
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where the subscript 1 on z; denotes that this is the first order estimate. From
bench test measurements we know that 1/b; = 26 mm to an accuracy of a few
%. Using this value, Equation 22 can be solved for C,
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We can also write Equation 22 in terms of an effective radius, beg,
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Solving this for beg gives,
1+C
beﬂ‘ = bm = 44.37 mm. (28)



As expected bog is larger than the physical radius of 35 mm. Using this value
of C' provides enough information to determine the values of the b coefficients,

by = 3.8461 x 1072 mm™* (29)
by = 6.3030 x 10~ mm—2 (30)
by = 3.3067 x 107 mm~3 (31)
r31 = b3/bl =8.5975 x 107° mm 2. (32)

5 Third Order Position

Using Equations 20 and 21 one can obtain an expression for the third order
estimate for the position, x3,
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where 131 = b3/by. The left hand side can be identified as the first order position

estimate, z1. If independent knowledge of y is available, this equation can be
solved for x3,
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This cubic equation can be solved using a library routine such as the CERNLIB
routine DRTEQ3. Inside the domain |z3| < 22 mm and |y| < 22 mm, the cubic
equation always has one real root and two complex roots; the real root is the
unique choice for the solution. As either x or y approach b, the cubic equation
has three real roots and it is not immediately obvious which is the correct one.
However that situation has never occured during extensive simulation of this
model.
In order to solve the cubic equation, one requires an independent estimate
of y. There are two obvious options for this,

e Use y = 0. This is all that can be done when a single BPM is analyzed in
isolation, as is done on the front end computers.

e Use the value of y computed from neighboring BPMs and the knowledge
of the lattice, as might be done offline.

6 Simulations

The plots in Figure 2 show the results of computations of A and B computed
using Equations 18 and 19 along with Equations 1 and 2. The values of the



parameters are, b = 35 mm, ¢ = 110° and C' = 0.11810. Both plots show the
values of A and B as a function of z, for different values of y and for different
orders of approximation in equations Equations 1 and 2. From this we can see
that going from first to third order of approximation makes a large change but
that adding further orders makes only a small change.

The plot in Figure 3 shows the results of the following study. For different
values of z and y, A and B were computed to 11*" order. These values were
used to compute the first order position estimate, Equation 25. The plot shows
the difference between the first order x position estimate and the generated x
position, as a function of generated = position. This is done for several different
values of y. The horizontal axis covers the full region for which the requirements
document specifies an accuracy of less than 1 mm. The first order estimate fails
the requirement for large values of x. Interestingly, the accuracy at large x is
best when y is also large; this is explained by the relative sign in the (22 — y?)
the (22 — 3y?) terms in equations 20 and 21.

The procedure was repeated using the ninth or tenth order calculation of A
and B. In these trials, the estimated position changed by less than 1 pum, relative
to the trial at eleventh order. From this we conclude that the computation of
A and B to eleventh order is more than sufficient to study the quality of the
position estimators.

The plots in Figure 4 show the results of computing A and B to eleventh
order then computing the position to third order, using Equation 36. The upper
and lower plots show the same information but with different vertical scales. In
order to use this equation, one must supply an estimate for y. When making
this plot, the true value of y was used. While this does not represent how the
instrument can be used in the field, it does provide a baseline against which
different algorithms for y can be benchmarked. This plot shows that if the
quality of the y estimate is excellent, then the worst case bias in the x position
estimate is less than 250 pm over the full range of interest, |z| < 15 mm and
ly| < 15 mm.

Figure 5 again shows the results of computing A and B to eleventh order then
computing the position to third order, using Equation 36. In this case, however,
a value of y = 0 was used for computing the estimated position, regardless of
the value of y used to compute A and B. Both the upper and lower plots show
the same information but on different vertical scales. This calculation simulates
a procedure that could be implemented on the front end computers. These plots
show that, for |y| < 10 mm, the the bias in z is less than the requirement of
1 mm for all values of || < 15 mm. For |y| > 10 mm, however, the bias is larger
than the requirement.

Figure 6 again shows the bias that results from computing A and B to
eleventh order then computing the position to third order, using Equation 36.
For the solid lines, Equation 36 was computed using y = ygen + 1 mm, where
Ygen 1s the generated value of y. For the dashed lines the position was computed
using ¢ = Ygen — 1 mm. This procedure models the sort of resolution in y that
might be available offline by using information from neighboring BPMs. The
results are excellent: the bias is less than 550 um over the full range of interest



and less than 200 pm for |y| < 10 mm.

7 Summary and Conclusions

Provided that the model of the pickup response and the model of coupling are
sufficiently accurate, this note shows that the first order = position estimate
passes the accuracy requirement of +£1 mm for small values of = but that it fails
the requirement for large values of z. It also shows that the third order estimate
for z, using y = 0, meets the requirements over most of the parameter space; it
fails only at large y. Finally, if y information derived from neighboring BPMs
has an accuracy of about 1 mm, then the third order x position estimate,
meets the accuracy requirements over the full parameter space.

What remains is to understand if this model of the pickup response and
coupling are themselves sufficiently accurate.
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Figure 2: Values for A and B computed using the model described in the
text. The upper plot shows A and B as a function of generated x for gen-
erated y = 0 mm, while the lower plot shows the same quantity for generated
y = 10 mm. In each case the three lines show different orders of expansion. By
11t order, the expansion has converged at a level corresponding to a position
accuracy of better than 1 pm.



(mm)

x(Meas—Gen)

Generate 11" Order, Compute x First Order

O
HH‘HH‘\\H‘H\\‘HH‘HH‘HH‘\H ‘\

—15 -10 -5
Generated x Position (mm)

Figure 3: To make this plot A and B were computed to 11*" order using the

model described in the text. These values were then used to compute the first
order = position estimate. The plot shows the bias in the first order x position
estimate as a function of the true x position. The different colors correspond
to different values of true y position. On this scale the red and blue curves are
nearly coincident.
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Figure 4: The bias in the third order = position estimate as a function of the
true x position. The third order x position estimate was computed with perfect
knowledge of the y position. This scenario will not be achieved in the field but it
establishes a useful baseline. The different colors correspond to different values
of true y position. The upper and lower plots show the same information but
on different vertical scales. Even on the expanded vertical scale of the bottom
plot, the red and blue curves are nearly coincident.
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Figure 5: The bias in the third order x position estimate as a function of the true
x position. The third order x position estimate was computed using y = 0, as
can be implemented in the front end computers. The different colors correspond
to different values of true y position. The upper and lower plots show the same
information but on different vertical scales.
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Figure 6: The bias in the third order x position estimate as a function of the true
x position. The third order x position estimate was computed using the true
value of y plus a bias of +1 mm (solid) or —1 mm (dashed). This is intended to
estimate the bias in = that might be achieved offline using y information from
neighboring BPMs. The different colors correspond to different values of true y
position.
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